Review of week-24 results

GNC-003: an international, double-blind, randomized, placebo-controlled phase IIb trial to assess the efficacy, safety and pharmacokinetics of GNbAC1 in patients with relapsing remitting multiple sclerosis

Clinical trial assessing the pHERV-W Env ANtagonist GNbAC1 for Efficacy in MS (CHANGE-MS)

Hans-Peter Hartung, François Curtin, Hans-Martin Schneble, Herve Porchet, Robert Glanzman, Estelle Lambert, Krzysztof Selmaj, on behalf of the GNC-003 investigators, Frederik Barkhof

ClinicalTrials.gov Identifier: NCT02782858
Authors’ Disclosures

• Hans-Peter Hartung:
 • Consulting, speaking and serving on steering committees from Bayer Healthcare, Biogen, GeNeuro, MedImmune, Merck, Novartis, Opexa, Receptos Celgene, Roche, Sanofi Genzyme and Teva, with approval by the Rector of Heinrich-Heine-University.

• Frederik Barkhof:
 • Consultancies: IXICO, Biogen-IDEC, Apitope Ltd, GeNeuro, Genzyme-Sanofi, Jansen Research, Roche, Novartis, Merck-Serono,
 • TEVA, Bayer-Schering Pharma
 • Research Grants: AMYPAD (IMI), EuroPOND (H2020), UK MS Society, Dutch MS Society, PICTURE (IMDI-NWO),
 • NIHR UCLH Biomedical Research Centre (BRC), ECTRIMS-MAGNIMS
 • Board Memberships: Radiology, Multiple Sclerosis Journal, Neurology, Eur Radiology, Brain
 • Speakers Bureaus: IXICO, Biogen-IDEC

• Krzysztof Selmaj, on behalf of the GNC-003 investigators

• François Curtin, Herve Porchet and Robert Glanzman are employees of GeNeuro S.A.

• Hans-Martin Schneble and Estelle Lambert are employees of Servier
Human Endogenous Retroviruses (HERVs)
Ancestral retroviral genomic insertions

- HERV elements are latent in human genome
 - Represent approximately 8% of human genome

- Pathogenic HERV-W envelope protein (pHERV-W Env) is associated with Multiple Sclerosis
 - Found in active MS lesions on monocytes and microglia
 - Viral infections (EBV) may de-repress and trans-activate pHERV-W Env expression

- pHERV-W Env: potent agonist of toll-like receptor 4
 - Pro-inflammatory immune activation
 - Inhibits oligodendrocyte precursor cell (OPC) maturation through nitrosative stress

Regulatory evolution of innate immunity through co-option of endogenous retroviruses; Science, Vol. 351, Issue 6277

Human Endogenous Retrovirus Type W Envelope Protein Inhibits Oligodendroglial Precursor Cell Differentiation; Ann Neurol. 2013;74(5)
The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade; Mult Scler. 2015 Aug;21(9)

GNbAC1
Blocks Env-induced nitrosative stress in OPCs: rescues myelin expression

- Recombinant, humanized IgG4-kappa mAb
- PK approx. dose linear, Half-life ≈ 1 month
- Binds with high affinity to pHERV-W Env (IC50 = 5.8 nM)
- Blocks pHERV-W Env activation of TLR4
- Rescues MBP* expression in OPCs

*MBP: Myelin Basic Protein; marker of OPC maturation
GNC-003 (CHANGE-MS)

Study Overview

- International, randomized, placebo-controlled Phase 2b study
- RRMS patients, 18 – 55
- EDSS 0 – 5.5
- 1 attack in the prior year or 1 Gd+ lesion within 3 months of screening, concomitant DMTs not allowed
- 10 Endpoint: Total # Gd+ lesions on brain MRI scans at weeks 12, 16, 20 and 24
- Remyelination endpoints: change in MTR in NAWM, cerebral cortex and lesions

Week 24
10/20 endpoints

Week 48
20/overall endpoints

Period 1
6 repeated doses
270 patients (1:1:1:1)

- Group GNbAC1 18 mg/kg
- Group GNbAC1 12 mg/kg
- Group GNbAC1 6 mg/kg
- Group Placebo

Period 2
6 repeated doses
270 patients (1:1:1)

- Group GNbAC1 18 mg/kg
- Group GNbAC1 12 mg/kg
- Group GNbAC1 6 mg/kg

MRI

IMP Administration
GNC-003 (CHANGE-MS)

Baseline Demographics

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Age</th>
<th>Sex</th>
<th>Relapses 1 Yr Prior</th>
<th>Duration of MS Yrs</th>
<th>Baseline EDSS</th>
<th>% Active * Gad+</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mg/kg</td>
<td>38</td>
<td>64%</td>
<td>1.2</td>
<td>5.6</td>
<td>2.9</td>
<td>58%</td>
</tr>
<tr>
<td>12 mg/kg</td>
<td>39</td>
<td>70%</td>
<td>1.4</td>
<td>6.0</td>
<td>3.2</td>
<td>48%</td>
</tr>
<tr>
<td>18 mg/kg</td>
<td>38</td>
<td>51%</td>
<td>1.3</td>
<td>5.4</td>
<td>3.3</td>
<td>38%</td>
</tr>
<tr>
<td>Placebo</td>
<td>36</td>
<td>73%</td>
<td>1.3</td>
<td>3.7</td>
<td>3.0</td>
<td>49%</td>
</tr>
</tbody>
</table>

* ≥ 1 Gad+ lesion on Baseline brain MRI scan: Per Protocol-like Set
GNC-003 (CHANGE-MS) week 24 safety results

No safety or tolerability issues over 24 weeks

<table>
<thead>
<tr>
<th></th>
<th>GNbAC1 6 mg/kg N=67</th>
<th>GNbAC1 12 mg/kg N=66</th>
<th>GNbAC1 18 mg/kg N=67</th>
<th>Placebo N=68</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 week completers</td>
<td>60 (90%)</td>
<td>59 (90%)</td>
<td>64 (95%)</td>
<td>66 (97%)</td>
</tr>
<tr>
<td>SAE</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Serious-related AE*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AE leading to early termination</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AE leading to death</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Macroscopic hematuria: resolved
GNC-003 (CHANGE-MS) week 24 efficacy results
No effect on inflammatory measures over weeks 12 - 24

<table>
<thead>
<tr>
<th></th>
<th>GNbAC1 6 mg/kg</th>
<th>GNbAC1 12 mg/kg</th>
<th>GNbAC1 18 mg/kg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Endpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gad+ lesions</td>
<td>Week 12 - 24</td>
<td># of lesions</td>
<td>510</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Mean (Med)</td>
<td>P value</td>
<td>8.4 (2.0)</td>
<td>6.9 (2.0)</td>
</tr>
<tr>
<td></td>
<td>p = 0.539</td>
<td>p = 0.704</td>
<td>p = 0.481</td>
<td></td>
</tr>
<tr>
<td>Secondary Endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change in whole brain volume</td>
<td>Baseline – week 24</td>
<td>Mean (Med)</td>
<td>-0.32 (-0.13)</td>
<td>-0.35 (-0.22)</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
<td>p = 0.539</td>
<td>p = 0.704</td>
</tr>
<tr>
<td># of relapses</td>
<td>Baseline – week 24</td>
<td># of lesions</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
<td>p = 0.492</td>
<td>p = 0.217</td>
</tr>
<tr>
<td>Total Gd+ lesions</td>
<td>Week 24</td>
<td>Mean (Med)</td>
<td>2.7 (1.0)</td>
<td>2.3 (0)</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
<td>p = 0.103</td>
<td>p = 0.907</td>
</tr>
</tbody>
</table>

Secondary endpoints include: total # new/enlarging T2 / CUAL / T1 BH; T2 / T1 BH volume, ARR, EDSS, MSFC, MSQOL-54
GNC-003 (CHANGE-MS) week 24 post-hoc analyses
Evidence for delayed onset of anti-inflammatory effect in active patients+ at 18 mg/kg

- Potential benefit appears at week 24
- Consistent across MRI endpoints
- 18 mg/kg dose consistently numerically superior
- Statistical separation with 18 mg/kg by week 24*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate Ratio</th>
<th>P-value</th>
<th>Rate Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mg/kg</td>
<td>0.988</td>
<td>0.970</td>
<td>6mg/kg</td>
<td>0.434</td>
</tr>
<tr>
<td>12mg/kg</td>
<td>0.918</td>
<td>0.805</td>
<td>12mg/kg</td>
<td>0.475</td>
</tr>
<tr>
<td>18mg/kg</td>
<td>0.567</td>
<td>0.129</td>
<td>18mg/kg</td>
<td>0.311</td>
</tr>
</tbody>
</table>

* Had at least 1 Gd+ lesion on their Baseline brain MRI scan
+ No adjustment for multiplicity was made
† Combined Unique Active lesions
Magnetization Transfer Ratio (MTR) in MS patients
Evidence for Myelin damage in NAWM and cerebral cortex

- MTR is reduced throughout normal-appearing white matter (NAWM) and cerebral cortex
- Pathological gradient of MTR loss: worst at CSF interfaces, worse in SPMS than RRMS
- Gradient of MTR loss suggests CSF-mediated pathogenesis

Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups; Mult Scler. 2014 Sep;20(10)
Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis; Brain. 2015 May;138(Pt 5):1239-46
Individual NAWM bands show an absolute increase of
≈ 2 MTR percentage units, with statistical trends in favor of
GNbAC1 at 18 mg/kg

<table>
<thead>
<tr>
<th>BAND</th>
<th>GNbAC1</th>
<th>Δ MTR BL to Week 24 (%units)</th>
<th>P value vs. placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6mg/kg</td>
<td>-0.280</td>
<td>0.814</td>
</tr>
<tr>
<td>1</td>
<td>12mg/kg</td>
<td>0.679</td>
<td>0.554</td>
</tr>
<tr>
<td>1</td>
<td>18mg/kg</td>
<td>2.177</td>
<td>0.060</td>
</tr>
<tr>
<td>2</td>
<td>6mg/kg</td>
<td>-0.262</td>
<td>0.820</td>
</tr>
<tr>
<td>2</td>
<td>12mg/kg</td>
<td>0.632</td>
<td>0.567</td>
</tr>
<tr>
<td>2</td>
<td>18mg/kg</td>
<td>2.064</td>
<td>0.064</td>
</tr>
<tr>
<td>3</td>
<td>6mg/kg</td>
<td>-0.278</td>
<td>0.806</td>
</tr>
<tr>
<td>3</td>
<td>12mg/kg</td>
<td>0.586</td>
<td>0.588</td>
</tr>
<tr>
<td>3</td>
<td>18mg/kg</td>
<td>2.014</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Evidence for remyelination with GNbAC1 18 mg/kg in NAWM vs. placebo
GNC-003 (CHANGE-MS) week 24 MTR analyses - Cortex
Evidence for remyelination with GNbAC1 18 mg/kg in cerebral cortex vs. placebo

<table>
<thead>
<tr>
<th>BAND</th>
<th>GNbAC1</th>
<th>Δ MTR BL to Week 24 (%units)</th>
<th>P value vs. placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6mg/kg</td>
<td>-0.252</td>
<td>0.832</td>
</tr>
<tr>
<td>3</td>
<td>12mg/kg</td>
<td>0.587</td>
<td>0.605</td>
</tr>
<tr>
<td>3</td>
<td>18mg/kg</td>
<td>2.167</td>
<td>0.059</td>
</tr>
<tr>
<td>2</td>
<td>6mg/kg</td>
<td>-0.251</td>
<td>0.829</td>
</tr>
<tr>
<td>2</td>
<td>12mg/kg</td>
<td>0.555</td>
<td>0.617</td>
</tr>
<tr>
<td>2</td>
<td>18mg/kg</td>
<td>2.109</td>
<td>0.060</td>
</tr>
<tr>
<td>1</td>
<td>6mg/kg</td>
<td>-0.282</td>
<td>0.807</td>
</tr>
<tr>
<td>1</td>
<td>12mg/kg</td>
<td>0.545</td>
<td>0.622</td>
</tr>
<tr>
<td>1</td>
<td>18mg/kg</td>
<td>2.052</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Individual cortical bands also show an absolute increase of ≈ 2 MTR percentage units with statistical trends in favor of GNbAC1 at 18mg/kg
GNC-003 (CHANGE-MS) week 24 results

Summary

Excellent safety and tolerability through 24 weeks

Effect of GNbAC1 on inflammatory measures:
- No effect on any MRI measure of inflammation from weeks 12 – 24 at any dose
- No effect on clinical measures through 24 weeks
- Post-hoc evidence for effect in active patients at week 24 at highest dose (18 mg/kg)

Effect of GNbAC1 18 mg/kg on measures of remyelination:
- NAWM and cerebral cortex:
 - Individual NAWM and cortical bands show dose-dependent trends in favor of GNbAC1 vs. placebo
 - Increase of ≈ 2 MTR percentage units across NAWM and cortical bands for 18mg/kg at week 24
 - MTR lesion analyses inconclusive for week 12 - 24. Week 48 data may be more informative.

GNC-003 is ongoing:
- Week 48 data on inflammation, remyelination, biomarkers and clinical measures - available Q1 2018
Acknowledgements

GNC-003 Scientific Steering Committee:
Chair: Hans-Peter Hartung, F.R.C.P.
Members: Sandra Vukusic, M.D., Ph.D., Maria Pia Sormani, Ph.D., Tobias Derfuss, M.D., Bruce Cree, M.D., Ph.D., Frederik Barkhof, MD, Ph.D.

Data Safety Monitoring Board:
Chair: Andreas Steck M.D.
Members: François Montestruc, Ph.D., Jules Desmeules, M.D., Ph.D.

Servier:
Alliance Partner for GNbAC1 development in Multiple Sclerosis

Worldwide Clinical Trials

BioClinica and Queen Square MS Trial Office

Special thanks to the primary investigators, site staff and patients participating in GNC-003 (CHANGE-MS) and GNC-004 (ANGEL-MS)